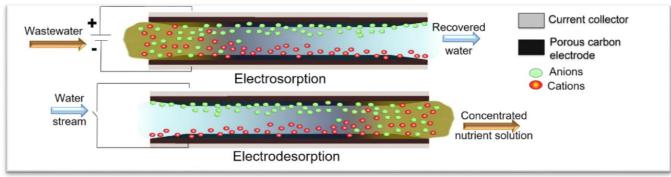

Nutrient recovery from municipal wastewater by CDI

Mikkeli


Motivation

- Prevention of water pollution is becoming increasingly coupled with nutrient recycling. To achieve both in a conventional wastewater treatment process requires the implementation of new technology and new process solutions.
- This work addresses capacitive deionization (CDI) as such a new technology.

Fundamentals of CDI

Basic phenomena: electrosorption.

Driving force: potential difference over two porous carbon electrodes.

- lons from the water stream migrate to the opposite charged carbon electrode;
- lons are electrostatically held in EDL;
- lons are released back from the electrodes to the water stream due to the short-circuiting of the reversed potential.

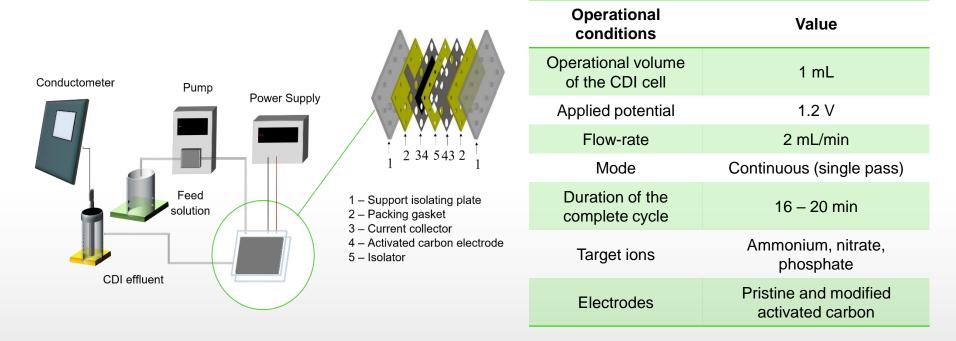
Current state of art

Limitations			
Pre-filtration			
Performance and stability of			
		the process are depended on the electrode material	

Voltea's Industrial System producing 30GPM* (110LPM) of purified water

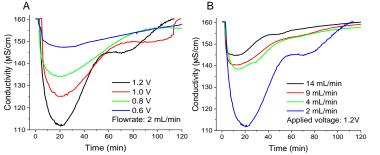
http://www.voltea.com/products/

Objectives of the project

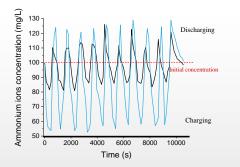

- Application of CDI for nutrient recover.
- Searching for appropriate carbon or composite materials for CDI electrodes.
- Scaling-up the CDI setup and integration into the conventional wastewater treatment plant (WWTP).
- Research
- Essential components for fertilizers production.
- Advanced wastewater treatment.
- Transformation of waste water treatment plant to a wastewater-resource factories (WWRF).

S

OBJECTIVE

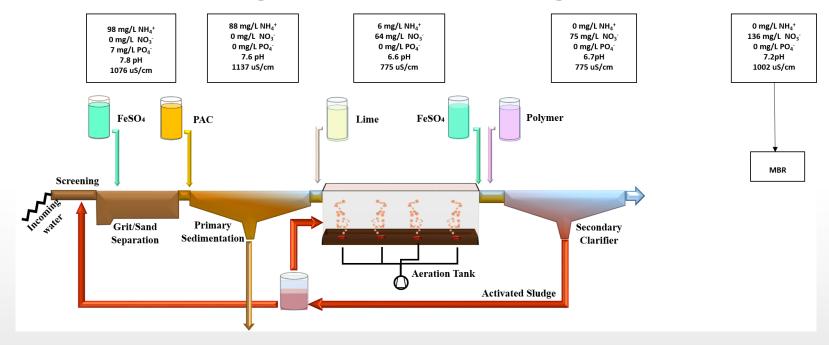


Experimental work



Results

Electroadsorption performance of CDI unit depending on A) applied voltage, B) flow rate.


Concentration profiles of the NH4Cl solution under performance of the pristine AC and AC oxidized electrodes.

Mikkeli

Parameter	Phosphate	Nitrate	Ammonium	
Electrode	Activated carbon (AC)		Modified AC	
Removal efficiency, %	18	48	27	82
Recovery efficiency, %	15	21	10	21
Electrosorption capacity of AC electrodes, mg/g	2	5.5	3	12
AC	AC-Na	1	AC-AI	Π.
<i>9</i> ~10		U		0.192

Contact angle of a water droplet on the surface of the AC pristine electrode and electrodes after surface modifications.

Municipal wastewater treatment system nutrients loading on each step (Aug-Sept 2019)

LUT

Universitv

CDI unit for nitrate recovery at the end of wastewater treatment process

Recovered water

Concentrated

Application of CDI into the current wastewater treatment system – process

Lime

Aeration

Primary

sludge

FeSO4

Tank

Sludge

dewatering liquor

Polymer

Clarifier

Surplus

sludge

Sludge treatment

activated

Secondary

Activated

Sludge

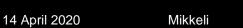
PAC

Primary

Sedimentation

Process

water


FeSO4

Grit/Sand

Separation

Screens

J^{nconing}

Application of CDI into the current wastewater treatment system – key metrics

Conditions			Calculated para	ameters	
Wastewater loading	10000	m ³ /day	Daily energy consumption	25000 kWh/day	
Energy consumption	2.5 kWh/m ³		Recovered water	8200 m	³ /day
Water recovery	82 %		Concentrated nutrient solution	1800 m	³ /day
Nitrate loading	*WW	**SDL		*WW	**SDL
	100	212	Nitrate recovered	36	80
	m	g/L		kg/d	ay
	*WW	**SDL		*WW	**SDL
Phosphate loading	-	172	Phosphate recovered	-	62
		mg/L	mg/L		ay
Nutrient recovery	20 %		***Market value of N: 1.1 €/kg	128	€
			***Market value of P: 1.7 €/kg	105	€

* WW - wastewater (after secondary clarifier); ** SLD - sludge dewatering liquor

***Market value of nutrients (World bank, 2016): https://datacatalog.worldbank.org/dataset/gem-commodities

LUT University

Thank you for your attention!

Olga Pastushok Junior Researcher, MSc E-mail: Olga.Pastushok@lut.fi GSM: +358 417513321